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ABSTRACT: In this Perspective we discuss the implications of
employing metal particles of different shape, size, and composition as
absorption enhancers in methylammonium lead iodide perovskite solar
cells, with the aim of establishing some guidelines for the future
development of plasmonic resonance-based photovoltaic devices. Hybrid
perovskites present an extraordinarily high absorption coefficient which,
as we show here, makes it difficult to extrapolate concepts and designs
that are applied to other solution-processed photovoltaic materials. In
addition, the variability of the optical constants attained from perovskite
films of seemingly similar composition further complicates the analysis.
We demonstrate that, by means of rigorous design, it is possible to
provide a realistic prediction of the magnitude of the absorption enhancement that can be reached for perovskite films
embedding metal particles. On the basis of this, we foresee that localized surface plasmon effects will provide a means to
attain highly efficient perovskite solar cells using films that are thinner than those usually employed, hence facilitating
collection of photocarriers and significantly reducing the amount of potentially toxic lead present in the device.

The use of metallic nanostructures is frequently
proposed as a means to enhance the performance of
photovoltaic devices.1−6 In particular, the use of metal

nanoparticles and arrangements of them have been explored for
almost all types of solar cells,7 be they solid-state8,9 or solution-
processed.10−23 Perovskite solar cells (PSC), based on thin
semiconductor layers with hybrid organic−metal halide
composition, are not an exemption.24−30 Although these films
are already efficient light harvesters, several features motivate
the development of new ways to enhance even further their
absorption. First, for the typical film thicknesses for which high
structural quality is attained, photon capture is not as high in
the range of 600 nm < λ < 780 nm as it is for shorter
wavelengths because the extinction coefficient rapidly decays
for red frequencies. Because the number of solar photons peaks
at longer visible wavelengths, this weaker red absorption affects
significantly the efficiency of the incident photon-to-electron
conversion process. Apart from this technical reason, there are
others of an environmental nature that also justify the attempts
to keep to a minimum the thickness of the perovskite layer.31,32

Indeed, the lead content of a device should be reduced as much
as possible to minimize the impact of a potential leak. Also in
this context, optimization of the optical design of the cell might
also provide a solution by maximizing light harvesting and
hence diminishing the amount of absorbing material necessary
to reach a determined efficiency.

At variance with other photovoltaic devices, like silicon or
dye-sensitized solar cells, the small thickness of the perovskite
layers typically employed (usually <600 nm) restricts the
possible modifications of their optical design that can be
proposed. Although photon management schemes of different
sorts have been proven to add functionality to the device, such
as color or transparency,33,34 this is usually achieved at the
expense of reducing its efficiency. This shortcoming results
from the need to introduce significant changes in the structure
of some of the cell components to attain the desired optical
properties. Under these circumstances, the inclusion of metal
nanoparticles, capable of supporting localized surface plasmon
resonances (LSPRs), within the perovskite layer appears as a
realistic means to achieve absorption enhancement altering
neither the usual configuration of the cell nor the geometry of
its components. Initial studies concluded that the inclusion of
metal oxide (SiO2, TiO2) coated metal (Au, Ag) nanoparticles
(40 to 80 nm diameter) gave rise to a very significant
photocurrent enhancement in methylammonium lead iodide
(MAPI)-based devices, but interestingly, it could not be
attributed to an improvement of light harvesting.24,25 Although
the origin of the enhancement observed remains unknown, it
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indicates that the presence of metal particles somehow favors
nonradiative photocarrier generation, separation, transfer,
transport, or collection.18,35 Later experimental evidence26−28,36

supported this hypothesis.
Initial observations thus raised the question as to whether

perovskite film absorption can be improved by including metal
particles or, on the contrary, their parasitic absorption would
compensate or even surpass the enhancement they could
potentially provide. To answer this question, we performed a
series of calculations in which gold particles were embedded in
a realistic cell configuration.37 We could demonstrate that
spherical inclusions much bigger than those previously tested
experimentally were required to actually improve the light-
harvesting efficiency of a MAPI film. As a validation proof, our
model also provided a theoretical verification of the optical
absorption results reported in refs 24 and 25, as can be
explicitly seen in Figure S1 in the Supporting Information.
Later, further theoretical analysis by other groups confirmed
this absorption enhancement considering different LSPR
designs.29,30 These works proved, at least from a fundamental
perspective, that plasmonic particles can be used to enhance the
absorption of perovskite films. Metal particles embedded in
other parts of the cell, such as the hole-transporting or the
electron-collecting (the so-called compact) layers have also been
proposed, providing different mechanisms of absorption
enhancement without being in contact with the perovskite.38

The increasing interest in the potentiality of this approach has
been highlighted in a number of reviews, which we refer the
reader to for a comprehensive account of the use of plasmonic
particles in a wide range of emerging solar cell technologies.18,19

In this Perspective we evaluate the potential that the radiative
effects distinctive of LSPRs of metal nanoparticles may offer to
the field of perovskite photovoltaics. We extract some general
conclusions that may help to identify which directions are more
promising to actually realize those prospective capabilities. To
do so, we start by estimating the maximum absorption
enhancement achievable as a function of the perovskite film
thickness considered, which serves for setting an upper limit to
the magnitude of the improvement that can be expected in the
best case scenario. The currently observed variability of the
optical constants of MAPI thin films as a function of the
preparation method employed is taken into account, and its
implications in our conclusions are discussed. We then appraise
the effect on the optical absorption of using embedded
nanoparticles of different composition among the most
standard ones, namely gold, silver, and aluminum, as well as
the consequence, always in terms of the optical design, of
coating them with thin dielectric shells to improve their
chemical stability and durability. The influence of employing
different particle geometries, particularly those that present
sharp tips and hence bear the promise of a larger near-field
enhancement, is also comparatively assessed. The main
technical conclusion of the nonexhaustive analysis herein
presented is that plasmonics may well be the key to a very
significant reduction of the perovskite film thickness and hence
of the amount of lead present in the device while, at the same
time, ensuring an unprecedented light-harvesting efficiency.
From a mechanistic perspective, our main conclusion is that the
improvement predicted is neatly the result of the near optical
field enhancement occurring at the longer wavelengths within
the absorption band of perovskites. Our work also highlights
that, in order to achieve such potential, a precise optical
description and design of the materials involved is required,

because most of the extracted conclusions cannot be
extrapolated from what was known to work for other
photovoltaic materials.

The diversity of methods to prepare MAPI thin films, as well
as the sensitivity of their structural features to the specific
synthetic conditions employed, have given rise to a wide range
of compounds with apparently similar composition but very
different electrical and optical properties.39 To illustrate this,
some selected examples of optical constants that have been
reported for perovskite thin films are provided as part of the
Supporting Information (see Figure S2).40−43 To be able to
extract some general conclusions, we chose a set of optical
constants attained for films used in highly performing
perovskite devices and that can be considered as an example
of a standard in the field.43 Nevertheless, the implications of
considering other perovskite films with diverse optical
constants on our estimations will also receive comment
throughout the text.
To set appropriate references, we first calculate the light-

harvesting efficiency for the range of film thicknesses that can
be found in most reports on PSC. In Figure 1a we show the
absorptance spectra, obtained as Ap = 1 − RT − TT, where RT
and TT are the calculated total reflectance and the total
transmittance, of a series of MAPI films of different thickness (n
and k as in ref 43), while in Figure 1b we depict the calculated
integrated solar absorption, ∫ Ap, which is given by

∫ ∫ λ λ λ= ·A A ( ) AM1.5D( ) dp
400

780

p

normalized by ∫ AMAX, which is the highest solar absorption
achievable, i.e., that of a hypothetical infinite MAPI film capable
of capturing all available sunlight photons of wavelengths within
the range 400 nm < λ < 780 nm (the range for which the
external quantum efficiencies reported is typically not zero).
We assume the films are surrounded by materials with refractive
indexes similar to those of glass and an arbitrary hole-
transporting layers. The presence of these layers introduces
certain reflectance that sets an upper limit for the achievable
absorptance, to which we will refer all results of our analysis. In
this case, Ap(λ) is the perovskite film absorptance and
AM1.5D(λ) is a standard for the solar radiance spectrum on
the Earth surface assuming only direct sunlight illumination. It
is interesting to note that even for the thicker films employed in
actual photovoltaic devices (thickness ≈ 600 nm) there is still a
significant amount of nonharvested light for λ > 600 nm. In
actual devices, this is partially compensated by the back
reflection introduced by the gold layer typically used as metal
contact.43 Because shiny metallic coatings are not44 or cannot
be45 used for this purpose in all cases, and in order to extract
conclusions that are as general as possible, we will not assume
the presence of any specific type of contact. Also, for the sake of
comparison, similar estimations like those reported in Figure 1

Plasmonic nanoparticles may be the
key to a very significant reduction of
the perovskite film thickness and hence
of the amount of lead present in the
device while at the same time ensuring
an unprecedented light-harvesting ef-
ficiency.
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are shown in Figure S3 in the Supporting Information for a
perovskite film of different optical constants, namely, like those
reported in ref 41.
Our generic description of the effect of plasmonic nano-

particles in PSC is based on a model that considers a geometry
like the one described in Figure 2, in which a metal particle of

volume v is located in a rectangular box made of MAPI. Full
details can be found in ref 37. A commercial simulator based on
the finite-difference time-domain (FDTD) method, from
Lumerical Solutions Inc., was used to perform the calculations.
Briefly, simulations consider a plane wave traveling along the z-
direction and impinging on a MAPI perovskite slab of thickness
h containing a single metal nanoparticle. Symmetry boundary
conditions are assumed along the x and y directions. As a
consequence of the strong absorption of the matrix, no

interaction between particles occurs at the concentrations
herein considered. The perovskite film is surrounded by a glass
substrate, of refractive index nG(ω) = 1.5, and a hole-
transporting material, nS(ω) = 1.7. The height of the box, h,
equals the thickness of the film, while the lateral dimensions, Lx
and Ly, will determine the concentration or filling fraction of
particles in the film:

= v
L L h

ff
x y

While for the case of simple geometrical objects, such as
spheres of radius r and cubes of side l, v is well-known
( π=v r4

3
3, v = l3), a very precise description of the geometry of

the particle under consideration is required when they present
an arbitrary shape to determine with accuracy their volume
fraction.
In Figure 3a we plot the normalized ∫ Ap attained for a

perovskite film of thickness h = 300 nm in which metallic
nanospheres of different size and composition, namely, gold
(red circles), silver (green circles), and aluminum (blue circles),
have been embedded. Please note that as we vary the radius of
the metal particles, r, we increase the concentration of the
inclusions because, for this illustrative case, we assume the
nanoparticle is contained within a fixed volume of perovskite
layer determined by Lx = 350 nm, Ly = 350 nm, and h = 300
nm. The values of the parameters considered determine that
the particle volume concentration is approximately within the
range 8% < ff < 25%. For the sake of comparison, we indicate
with dashed lines what would be the thickness of a MAPI film
that presents a similar normalized ∫ Ap. Although an exhaustive
study will be required to determine the optimum set of
parameters (size, filling fraction, exact location in the film, etc.),
the first lesson that can be extracted from this data is that the
three types of metal nanoparticles considered may give rise to a
significant reinforcement of the integrated solar absorption of
the film. In all cases, this occurs for sizes much larger than those
previously tested either in perovskite or other solution-
processed devices.18 Also, and most importantly, the results
presented in Figure 3a already demonstrate the extraordinary
potential of silver particles as perovskite absorption enhancers:
a 300 nm thick MAPI film loaded with such particles absorbs as
much solar radiation as one of width larger than 1 μm. It can be
shown that the origin of the enhancement predicted lies in the
localization of optical fields with λ > 600 nm within the
perovskite volume closer to the particles surface. Panel b and c
of Figure 3 depict the calculated normalized distribution of the
squared amplitude of the electric field, |E|2/|E0|

2, and the
absorbed power per unit volume, Ppuv, respectively, for the case
of an incident plane parallel beam light of wavelength λ = 750
nm. A detailed analysis reveals that the value of the volume
integrated |E|2/|E0|

2 is actually significantly higher for silver than
for gold or aluminum particles. More details are given in the
Supporting Information (see Figure S4). It is interesting to
note that metal particles seem to behave as true light antennas
when dispersed in perovskite films, this effect being the main
reason for the improvement herein predicted.
To illustrate this radiative LSPR effect in more detail, we

show in panels a, b, and c of Figure 4 the absorptance curves of
300 nm thick perovskite films containing gold, silver, and
aluminum particles, respectively, with the size and concen-
tration for which the solar integrated absorption was maximum
among those presented in Figure 3a. Absorptance of both

Figure 1. (a) Calculated absorptance spectra of MAPI perovskite
films of different thickness. (b) Normalized solar absorption versus
MAPI film thickness.

Figure 2. Schematic of the modeled perovskite unit cell, with
dimensions (Lx, Ly, h), embedding a metal nanoparticle. The
perovskite film is assumed to be supported on glass and coated by a
hole-transporting material, each layer being characterized by
generic optical constants. The nanoparticle is always centered at
x = y = z = 0. Light impinges on the perovskite layer from below.
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MAPI and metal inclusions are separately evaluated using the
expression

∫ω ωε ω ω ω= | |A E x y z n k V( ) ( , , , ) ( ) ( ) dj j j j0
2

with ω the angular frequency and E the electric field vector;
nj(ω) and kj(ω) are the spectral-dependent real and imaginary
parts of the refractive index of the material over whose volume,
Vj, the integral is calculated. The parameter j stands for either
perovskite, Ap, or metal, Am. It can be explicitly seen that the

enhancement takes place for a wide spectral range in the red
part of the absorption band of the perovskite film. On the other
hand, the competing and eventually unproductive parasitic
absorptance of the metal particles is provided in panels d, e, and
f of Figure 4 for gold, silver, and aluminum nanospheres,
respectively. Contrary to what happens with other absorbing
matrices, where the spectral ranges at which enhancement
should occur can be guessed from the analysis of the extinction
cross section of the particles in a hypothetical nonabsorbing
medium that possesses a similar real part of the refractive
index,19 in the case of the highly absorbing perovskite thin films
such a cross section cannot be univocally defined nor
approximated. This is due to the fact that the spectral and
angular distribution of the scattered light intensity, as well as
the amount of absorbed light, will depend strongly on the
depth at which the particle is embedded in the absorbing
medium.37 This behavior is radically different than that
observed in, for instance, scatterers embedded in dye-sensitized
titania films, where approximations like the ones described in
ref 19 account well for experimental observations.46,47 Hence,
to find the optimum configuration for specific perovskite solar
cell designs, no shortcuts can be taken: only a full rigorous
calculation in which the effect of the imaginary part of the
refractive index of the matrix on the LSPR related absorption
and scattering effects is considered can provide the desired
outcome. However, advantageously, as can be seen in Figure 3a,
the conditions to find a plasmonic configuration that improves
the film absorption are not very stringent, as ample ranges of
sizes and concentrations give rise to some degree of
improvement. This applies also for much thicker films, in
which the room for improvement is much smaller, as is shown
in Figure 5. There, we plot ∫ Ap/∫ AMAX versus the radius of
gold particles for different concentrations, i.e., (Lx, Ly) values,
for the case of a 500 nm thick MAPI layer.

Metal nanoparticles can be synthesized not only in a wide
range of compositions but also with a variety of shapes and
coatings,48,49 as illustrated in Figure 6. Spheres, rods, stars,
cubes, or, in general, regular and irregular polyhedrons, as well
as amorphous shape particles can be attained and then coated
by a layer of a different material, typically a metal oxide such as
SiO2, TiO2, Al2O3, etc. From the point of view of their use in
photovoltaics, both shape and coating influence the optical
effects related to the LSPRs. In fact, the presence of sharp edges
or tips is expected to favor more intense near-optical fields50

and hence give rise to higher absorption. On the other hand, a
dielectric layer surrounding the metal surface might induce a
strong localization of the optical field within the shell, thus
diminishing the absorption of light by the solar material.
However, beyond optical performance, its presence may favor
the chemical stability of the metal particle either when
immersed in the perovskite precursors during the synthesis or
after the semiconductor matrix is formed, assuring its long-term
durability. The different implications of either modifying the

Figure 3. (a) Normalized solar absorption for a 300 nm MAPI film
containing metal nanospheres of different radius and composition,
namely, gold (red circles), silver (green circles), and aluminum
(blue circles). Dashed lines indicate the normalized solar
absorption of the reference perovskite film (orange line) as well
as, for the sake of comparison, of thicker films. Panels b and c
depict the spatial distribution of the normalized electric field
intensity and the absorbed power per unit volume, respectively,
attained at λ = 750 nm for a gold, silver, and aluminum (left,
central, and right panels, respectively) spherical inclusion of radius
120 nm.

The conditions to find a plasmonic
configuration that improves the film
absorption are not very stringent, as
ample ranges of sizes and concentra-
tions give rise to some degree of
improvement.
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morphology of the particle or introducing an outer protective
layer on the radiative plasmonic effects that determine the
absorption enhancement are discussed next.

Regarding shape effects, in panels a, b, and c of Figure 7, we
provide a series of absorptance spectra (AP(λ)) of a 500 nm
thick MAPI film calculated considering a similar concentration
of three different types of bare (uncoated) particles, namely,
gold rods, gold stars, and silver cubes, respectively. In the cases
of rods and cubes, the spectra shown correspond, for both s and
p polarizations, to the average of the absorptance curves
computed considering different rotation angles of the particle
within the perovskite film, because the LSPR effects are highly
sensitive to the relative orientation of the incident beam and
the particle.51 In all cases, the spectra of both a homogeneous
MAPI film (orange curve) and the same film containing gold
nanospheres (red curve) is plotted for the sake of comparison.
The volume occupied by the metal inclusions is also similar in
all films. Contrary to what could be expected, the effect of
sharper features, around which light efficiently localizes, as can
be seen in Figure 7d, is compensated by poorer optical field
concentration at other regions of the particle surface, overall
providing an absorption enhancement comparable to the one
attained from round particles (Figure 7a−c). This can be
readily seen in the case of the cubes (Figure 7d, last panel),
where the electric field concentrates significantly only around
the vertices. A more thorough description of this compensating
effect in the case of nanostars is given in the Supporting
Information (Figure S5). The case of the rods deserves
particular attention because the absorption enhancement
observed is strongly dependent on the orientation of their
long axis with respect to the incident beam. Indeed, if it was
possible to have all rods vertically oriented (i.e., parallel to the
incident beam), the absorption obtained would significantly
overcome that of a dispersion of the same volume of spherical
particles, as described in Figure S6. However, the average of the
spectra corresponding to different relative alignments results in
an enhancement factor similar to that achieved with spheres.
Note also that rods of the same volume but different aspect
ratio would provide dissimilar outcome.
Finally, the consequences of shielding the metal particles

with dielectric coatings are also assessed. In Figure 8a we show
the normalized solar integrated absorption of a series of MAPI
films containing gold spheres covered by silica shells of different

Figure 4. Perovskite absorptance spectra of selected 300 nm MAPI thin films containing (a) gold, (b) silver, and (c) aluminum spherical
particles. Orange solid lines show the absorptance spectra of the reference perovskite film. Panels d, e, and f display the total absorptance of
the corresponding metal dispersions.

Figure 5. Normalized solar absorption for 500 nm thick MAPI
perovskite films containing different concentrations of gold
nanospheres of different sizes. Volume of evaluated unit cell is,
in each case, 250 × 250 × 500 nm3 (black), 300 × 300 × 500 nm3

(red), 350 × 350 × 500 nm3 (blue), 450 × 450 × 500 nm3

(magenta), and 500 × 500 × 500 nm3 (green). Dashed gray line
indicates the normalized solar absorption of a bare MAPI film of
similar thickness.

Figure 6. Illustrative examples of the wide variety of shapes in
which metal nanoparticles of different composition can be
synthesized: (a) silica-coated gold spheres, (b) silica-coated gold
rods, (c) gold nanostars, and (d) silver cubes. Panel d reproduced
with permission from ref 49. Copyright 2002 The American
Association for the Advancement of Science.
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thickness (Au@SiO2). It can be seen that, although the overall
light harvesting by the perovskite film is always larger when
uncoated particles are used, the presence of a dielectric
protective layer does not necessarily prompt the collapse of the
enhancement effect of the metal inclusions, as long as its
thickness is not too big. More precisely, for the case chosen as
example, a 10 nm wide silica layer allows preserving a great deal
of the reinforcement effect while potentially providing chemical
stability to the particle. Analysis of the spatial distribution of the
calculated optical field, |E|2/|E0|

2, and the absorbed power per
unit volume, Ppuv, reveals that the addition of a dielectric

Figure 7. Absorptance of a 300 × 300 × 500 nm3 MAPI perovskite
film embedding (a) gold nanorods (of aspect ratio 1.73), (b) gold
nanostars, and (c) silver nanocubes, all of them with the same
volume as that of a 90 nm radius sphere. In all cases, random
orientation of the nanoparticles dispersed in the perovskite slab, for
s and p polarizations, are assumed. The absorptance spectra of a
homogeneous MAPI film of the same thickness without (orange
line) and with (red line) 90 nm radius spheres embedded are also
plotted for the sake of comparison. The contour plot in panel d

Figure 7. continued

represents the spatial distribution of the normalized electric field
intensity at λ = 750 nm.

Figure 8. (a) Normalized solar absorption of a 500 nm MAPI film
embedding 90 nm radius gold spheres as a function of the thickness
of the protective silica shell considered, as schematized in the
insets. The blue dashed line is placed at the normalized solar
absorption value of a reference film of similar thickness but without
embedded particles. Panels b and c depict the spatial distribution of
the normalized electric field intensity and the absorbed power per
unit volume, respectively, attained at λ = 750 nm.
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protective layer to the metal particle causes a strong localization
of the optical fields in the shell, in which no absorption takes
place. This can be readily seen by comparing panels b and c of
Figure 8. However, for the thinner layers considered, this effect
is compensated by a larger scattering, which allows maintaining
a high enhancement. Also, ∫ Ap/∫ AMAX rapidly approaches the
efficiency of the reference film as the thickness of the shell is
increased. Thicker shells than those presented in Figure 8a
should eventually have a deleterious effect on the film
productive absorption. Further details, such as the analysis of
different combinations of gold particle size and shell thickness,
can be found in the Supporting Information (Figure S7).
In this Perspective, by means of theoretical modeling and

calculations, we realize an illustrated overview of the role metal
nanoparticles can play in perovskite-based photovoltaic devices.
Our focus is exclusively on the radiative effects associated with
the localized surface plasmon resonance characteristic of metal
nanoparticles. We have tried to consider material configurations
and optical constants as realistic as possible, establishing a set of
references without forgetting the evident problem of stand-
ardization that exists in the field and employing metal
nanoparticles of different composition, size, shape, and internal
structure.
Our main conclusion if that metal nanoparticle inclusions do

behave as highly efficient absorption enhancers that may allow
maximizing the light-harvesting properties of a perovskite film
of a given thickness. This should result not only in an
optimization of the optical performance of the device but also
in a reduction of the amount of absorbing material employed,
hence reducing the environmental impact of the use of lead-
based semiconductors like the hybrid perovskites herein
considered. Our analysis demonstrates that, in all cases, both
metal particle sizes and concentrations of choice are well-above
those employed for other photovoltaic devices, a consequence
of the extraordinarily high absorption coefficient of the
perovskite films. Interestingly, the range of parameters of the
solid dispersion for which enhancement is observed is not
restrictive. In addition, a series of remarkable features, such as
the enormous potential of silver nanoparticles, which provide
the largest enhancements among all metals considered, or the
possibility to protect the particle surface with a dielectric
coating while preserving the sought-after absorption enhance-
ment effects, serve to point out promising future directions of
research.

The reader should be aware that the results herein presented
constitute by no means an exhaustive analysis of all possible
designs incorporating metal nanoparticles; a thorough opti-
mization process should be carried out for each specific case
under consideration. Although all examples herein chosen deal
with methylammonium lead iodide, absorption-enhancing
effects of even larger magnitude should be expected for other
hybrid perovskites of relevance in photovoltaics in which other
halide, metal, or organic ions are present. Also, the effect of
metal particles on the charge transport through the perovskite
film has not been accounted for, nor the potential benefit of
nonradiative effects such as hot electron transfer and plasmon-

induced resonant energy transfer. On the basis of the
encouraging perspectives herein presented, we foresee that an
integral study of all radiative and nonradiative plasmonic effects
of metal particles embedded in perovskite films might allow
finding configurations that yield an even better performance
while further reducing the amount of photovoltaic material
employed.
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