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ABSTRACT: We report on the theoretical analysis of equilibrium distances in real
plane-parallel systems under the influence of Casimir and gravity forces at thermal
equilibrium. Due to the balance between these forces, thin films of Teflon, silica, or
polystyrene in a single-layer configuration and immersed in glycerol stand over a silicon
substrate at certain stable or unstable positions depending on the material and the slab
thickness. Hybrid systems containing silica and polystyrene, materials which display
Casimir forces and equilibrium distances of opposite nature when considered
individually, are analyzed in either bilayer arrangements or as composite systems
made of a homogeneous matrix with small inclusions inside. For each configuration,
equilibrium distances and their stability can be adjusted by fine-tuning of the volume
occupied by each material. We find the specific conditions under which nanolevitation
of realistic films should be observed. Our results indicate that thin films of real materials in plane-parallel configurations can be
used to control suspension or stiction phenomena at the nanoscale.

1. INTRODUCTION

Quantum theory states that, at zero temperature and in the
absence of any radiation, there are fluctuations of the
electromagnetic field (the so-called vacuum fluctuations) that
give rise to the well-known van der Waals1 and Casimir2 forces
between polarizable objects. These forces are at the heart of
many fluctuation-induced interactions in biology, chemistry,
and physics, being responsible for superlubricity,3 adhesion,4,5

and stiction in micro- and nanoelectromechanical (MEM and
NEM) devices.6,7 In particular, the Casimir force2 was first
derived by H. Casimir in 1948, establishing that two perfectly
conducting plates in vacuum at zero temperature would be
attracted by a force (per unit area A) F0 = −(ℏcπ2)/(240d04),
with d0 being the separation distance. Later, E. Lifshitz and co-
workers1,8 generalized this prediction and extended it to
nonplanar complex geometries containing bodies with arbitrary
optical properties at thermal equilibrium. Since then, Lifshitz’s
theory has been experimentally and theoretically applied to a
broad range of conditions covering different length scales,9 real
dielectric materials10−12 (with rough surfaces13 or with fluids
between the bodies14), and diverse geometries (planar,15

nonplanar,16 multilayered,17−19 and corrugated geome-
tries20,21). In the same context, the dynamical Casimir effect,22

induced torques,23−25 and the response out of thermal
equilibrium26 have been widely investigated as well.
One of the most exceptional predictions of the generalized

Lifshitz’s theory is the appearance of repulsive Casimir
forces1,7,27−35 when real materials are considered. In particular,
in plane-parallel systems the nature of these forces is dictated
by the dielectric permittivity of all the objects composing the
system through the Fresnel coefficients. Intense repulsive forces

are desirable for minimizing friction, adhesion, or stiction in
different systems, including MEM and NEM devices. One way
to obtain repulsive Casimir forces consists of immersing two
objects (characterized by ε(−1)(iξn) and ε(1)(iξn), respectively)
in a fluid (with ε(0)(iξn)), which satisfy over a wide frequency
range the condition ε(−1)(iξn) < ε(0)(iξn) < ε(1)(iξn).

1,28 In the
inequation, ε(iξn) are the dielectric permittivities of each
material evaluated at Matsubara frequencies (iξn, with n = 0, 1,
2, ...). However, this condition does not always guarantee
repulsive forces, and furthermore, the dielectric function at all
frequencies (essential for evaluation of Casimir forces) is
known for a few solid and liquid materials. Potential strategies
to fulfill the above inequation with materials already existing in
nature include the modification of the dielectric function of one
of the materials upon crystallization36 or with hybrid systems
comprising several materials such that the composite behaves as
a homogeneous material with an effective dielectric function
and density.37−39 Additionally, when two interacting objects are
under the influence of both Casimir and gravity forces,
nanolevitation may take place if the Casimir force equals the
gravity force at a certain (equilibrium) distance.16,40 Nonethe-
less, intuition about the balance of such forces cannot be easily
applied in systems containing real materials because the
Casimir force will be determined by the multiple Fresnel
coefficients and the dielectric permittivity of all materials
composing the system, covering the UV and far-infrared ranges.
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Here, we investigate theoretically nanolevitation phenomena
occurring in infinite (in area) plane-parallel systems in which a
self-standing thin slab made of a real material immersed in a
fluid stands over a substrate (see the three configurations here
studied in the schematics in Figure 1). We will consider gap
separations ≥50 nm, so instead of using the Hamaker approach
that applies to distances shorter than a few nanometers,41,42 we
will consider the general Lifshitz formula that includes
retardation effects of the field across the gap. In particular,
we perform systematic analyses considering thin films of
dielectric materials that can be easily processed and function-
alized (thus avoiding the possible appearance of electrostatic
forces), whose optical properties have been extensively studied
in the literature (in particular, their dielectric functions), and
with densities such that Casimir forces can finely cancel the
gravity force when they are immersed in a fluid. Specifically, we
consider thin films of Teflon, silica (SiO2), and polystyrene
(PS) immersed in glycerol, on top of a silicon (Si) substrate.
We expect that functionalization strategies and the appearance
of thin SiO2 layers on top of the Si substrate will not strongly
affect our results. We find that, while single layers of Teflon and
SiO2 present repulsive Casimir forces giving rise to stable
equilibrium position, PS slabs display the opposite behavior.
We predict nanolevitation phenomena also in hybrid systems
whose components present Casimir forces and equilibrium
distances of opposite nature (stable or unstable), in either a
bilayer configuration or as a composite slab made of a
homogeneous matrix with small inclusions inside. The results
obtained for composite slabs are discussed in terms of the
choice of the effective medium approximation considered. We
show that the equilibrium distances are modified through the
variation of the slab thickness in the single-layer configuration,
the thickness of the individual components in the bilayer
configuration, and the filling fraction of inclusions in the
nanocomposites, parameters which have a strong effect on both
Casimir and gravity forces.

2. THEORETICAL APPROACH
A schematic of a general multilayer system containing up to
seven layers (m = 0, ±1, ±2, ±3) is displayed in Figure 2a. The
medium mediating the Casimir interaction is denoted by “0”,
which in our studies will be a fluid. Positive and negative scripts
account for materials (or layers) above or below the fluid,
respectively. The thickness of each layer is indicated on the left,
dm, and the corresponding permittivities, ε(m)(iξn), and
densities, ρm, on the right. The Casimir force (per unit area)
in such a multilayer system depends on the multiple Fresnel
coefficients of the top (Rj

(+)) and bottom (Rj
(−)) surfaces of the

mediating layer, for transverse magnetic and electric polar-
izations (j = TM, TE, respectively) as43
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In the above expression, the wavevector inside the liquid
layer is defined as K = (k⊥, kn

(0)); n = 0, 1, 2, ..., describes the
discrete and infinite Matsubara frequencies ξn = (2πkBTn)/(ℏ);
the “prime” in the summation indicates that the n = 0 term

Figure 1. Schematics of the systems studied: (a) single layer with thickness d1, immersed in a fluid at a separation distance, d0, from the substrate; (b)
bilayer with thickness d2 for the top layer and d1 for the bottom layer; and (c) matrix made up of one material of thickness d1 with a volume fraction
( f) of small inclusions of another material. The three systems are considered to have infinite area; i.e., the width and the length are much larger than
the layer thickness.

Figure 2. (a) Schematic of a multilayer system presenting the notation
used to calculate the Casimir force. For each layer (m = 0, ±1, ±2,
±3), thickness is denoted by dm, density by ρm, and dielectric functions
at Matsubara frequencies by ε(m)(iξn). (b) ε(iξn), for Teflon, PS, SiO2,
glycerol, ethanol, and Si (with a doping level 1.1 × 1015 cm−3 and
resistivity 0.077 (Ω·cm)−1). ε(iξn) for Si in an extended frequency
range is shown in Figure S1 in the Supporting Information.
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must be multiplied by a factor 1/2; and Rj
(±) are the multiple
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In turn, Rj
(±) are written in terms of the simple Fresnel

formulas for each polarization, evaluated at the Matsubara
frequencies, as
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Applying proper conditions to the number of layers and
corresponding thickness to each single layer or bilayer
configurations, we calculate the Casimir force mediated through
medium (0).
The permittivity evaluated at Matsubara frequencies is

obtained through eq 7
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with ε″(ω) being the imaginary part of the dielectric function at
ω frequencies, ε(ω) = ε′(ω) + iε″(ω).
For SiO2, PS, and Si (with a doping level 1.1 × 1015 cm−3 and

resistivity 0.077 (Ω·cm)−1) we consider the dielectric functions
ε(ω) tabulated in ref 44, refs 45−47, and refs 10 and 48,
respectively, and apply eq 7. For Teflon, ethanol, and glycerol,
we employ oscillator models extracted from ref 14 which
directly provide ε(iξn). On the other hand, for hybrid systems
composed of two materials in the form of a matrix with a
fraction of inclusions inside ( f), we consider a single layer with
an effective dielectric function, εeff(ω),

39 and then apply eq 7.
At least 12 mixing formulas have been proposed for calculating
the effective permittivity49 in hybrid systems, and the validity of
some of the formulas applied to calculations of the Casimir
force has been previously analyzed for polymer matrices with
metallic inclusions inside.39 However, the accuracy of the
various theories can be judged only when comparing with
experimental data.50 In this work, we will use the widely
employed Maxwell−Garnett (εeff

MG(ω)) and Bruggeman
(εeff

Bru(ω)) models for spherical inclusions and compare them
with results obtained using the Cuming (εeff

Cum(ω)) model,
which does not assume any special geometry for the inclusions,
and it has been shown to be valid for large filling fractions.49

The corresponding expressions for each model are the
following
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with εi and εh being the dielectric functions of the inclusions
and the host material, respectively.
For a given geometry at finite temperature and in a static

situation, the nature (attractive or repulsive) and magnitude of
the Casimir force depend on the dielectric response of all
participating objects in the system and the separation distance.
Figure 2b shows ε(iξn) for Teflon, PS, SiO2, glycerol, ethanol,
and Si. All materials considered in the figure satisfy the previous
inequation at different frequency ranges in a configuration in
which Si is taken as the substrate, glycerol or ethanol is the
intermediate fluid, and the slab is made of any of the other
materials. However, as we will show next, repulsive Casimir
forces leading to stable equilibrium positions are found only for
thin slabs made of Teflon and SiO2 immersed in glycerol or if
SiO2 and PS materials are properly arranged in hybrid
configurations. We also discarded for force calculations other
liquids that, in comparison to SiO2, PS, and Si in the same
configuration, do not fulfill the previous inequation in any
frequency range. Some of the tested liquids were water,
methanol, pentane, hexane, heptane, octane, and some
cycloalkanes.

3. RESULTS AND DISCUSSION
Single-Layer System. Let us first consider the case of a

thin layer immersed in a fluid with materials that fulfill the
inequation ε(−1)(iξn) < ε(0)(iξn) < ε(1)(iξn). This is the simplest
system that can be considered in which the dielectric
permittivity of each material is well-defined, and the interaction
is mediated through the simple Fresnel coefficients. Figure 3
shows the total force (per unit area) calculated using eq 1 at
room temperature (T = 300 K) as a function of the separation
distance, d0, for thin films of (a) Teflon, (b) SiO2, or (c) PS,
immersed in glycerol over a Si substrate.
We consider experimentally available values of the film

thicknesses,51−53 d1. In this configuration, and bearing in mind
the original sign convention of F0 (F < 0 attractive and F > 0
repulsive), the total force acting on the dielectric thin film is
F(d0,T) = Fc(d0,T) − Fg, with Fg = (ρ1 − ρglycerol)gd1 and ρTeflon
= 2.20 g/cm3, ρSiO2

= 2.65 g/cm3, ρPS = 1.05 g/cm3, and ρglycerol
= 1.26 g/cm3, the corresponding densities. On one hand,
systems consisting on single layers of Teflon and SiO2 present a
total repulsive (positive) force at short separation distances,
which changes to be attractive (negative) at larger distances,
tending to the asymptotic value of Fg for each slab thickness
(i.e., Fc = 0). The distance at which the Casimir force
compensates the gravity force (F(deq) = 0) is a stable
equilibrium distance; i.e., any slight deviation from that position
will lead to a force pointing to the equilibrium position. On the
other hand, for PS films immersed in glycerol the opposite
behavior is found: a total attractive force governs at short
distances, and a repulsive force is found at larger ones, due to
the low density of PS. In this case, the equilibrium position is
unstable since any deviation from it will provoke that the film
will either get attached to the Si substrate (for d0 < deq) or float
(for d0 > deq). In the paper, figures displaying results related to
stable positions will be shown with solid lines and those related
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to unstable positions with dashed lines. Isolated calculations of
Fc as a function of the separation distance for SiO2 and PS slabs
are shown in Figure S2 in the Supporting Information. As the
interaction between the bodies is established through
fluctuating electromagnetic fields, and such fields are always
present inside and extend beyond material boundaries,54 the

reach of the Casimir interaction will depend on the materials,
slab thicknesses, and separation distances considered. In
particular, it has been already shown that the strength of the
Casimir force mainly depends on the slab thickness through
contributions of TE and TM modes of the multiple Fresnel
coefficients.55 Eventually, the interaction between thick enough
slabs must tend to the limiting case of two semi-infinite media
separated a certain distance, and the interaction between slabs
of a given thickness must be zero for large enough gap
distances. Examples of the comparison between slabs of finite
thickness and semi-infinite ones are provided in Figure S3 in
the Supporting Information.
A similar system composed of PS thin slabs immersed in

ethanol over a Si substrate was reported to display stable and
unstable equilibrium distances under the influence of gravity.56

However, the ethanol permittivity used in ref 56 seems to be
inaccurate, as it has been already pointed out.57 Calculations of
the total force acting on such a system considering the proper
permittivity of ethanol14 show that no equilibrium positions are
found (Figure S4 in the Supporting Information). Another
phenomenon that may take place for a given system under the
influence of both Casimir and gravity forces consists of the
existence of both stable and unstable equilibrium positions. An
example of this phenomenon is shown in Figure S5 in the
Supporting Information.
For the three systems considered in Figure 3, we realized a

deeper analysis of the stability of the equilibrium positions
under thermal variations around room temperature. Figure 4
shows equilibrium distances as a function of the film thickness,
d1, for T = 250, 300, and 350 K. This analysis shows that
equilibrium distances in systems with Teflon and SiO2 present
stable positions covering the range deq ∈ [150, 215] nm and deq
∈ [50,74] nm, respectively, with variations of ∼10% and 15%
under temperature changes. Equilibrium positions also change
with temperature for PS slabs but in this case with lighter
variations of ∼5%, displaying unstable deq ∈ [350, 770] nm.
The temperature dependence of deq is explained through
changes of the Fc in terms of the relative contributions of the
TE and TM polarizations at n = 0 and n > 0 (eq 1). In all cases
here considered, TE contributions hardly vary with temper-
ature, concluding that TM modes are responsible for the
variations found. A deeper analysis of TM contributions at n =
0 and n > 0 demonstrates that the higher the balance between
both contributions, the smaller the variations of Fc with
temperature and, therefore, of the equilibrium distances, as in
the case of PS slabs. In contrast, for Teflon and SiO2, a less
balance between both contributions is found, leading to higher
variations of deq with temperature (see Figure S6 in the
Supporting Information).
We have seen that single layers of Teflon, SiO2, and PS

present equilibrium positions that can be tuned through the
slab thickness. The question now is what happens when several
materials are combined since it may have an effect on the
Casimir force through either the multiple Fresnel coefficients
(in multilayer systems) or the effective dielectric function (in
composites), as well as on the gravity force through the density
of all components. An interesting system to be analyzed is that
composed of two materials which, in individual layers, present
Casimir forces of different sign and equilibrium distances of
opposite stability. In our studies we will focus on different
mixtures of SiO2 and PS, two materials that have been
frequently combined,58−64 whose optical properties are well-
known, and with densities differing considerably.

Figure 3. Total force acting on thin films of (a) Teflon, (b) SiO2, and
(c) PS immersed in glycerol over a Si substrate, as a function of the
separation distance. Film thicknesses of d1 =200, d1 = 500, and d1 =
1000 nm are considered. Solid lines correspond to systems displaying
stable equilibrium positions and dashed lines to unstable ones. F(d0,T)
= 0 is marked with dashed gray lines.
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Bilayer System. One kind of hybrid system that can be
fabricated is a bilayer film. As we will show next, the total force
acting on such a system can be controlled at will through the
layer thickness of the individual materials and the orientation of
the bilayer with respect to the substrate (with either the SiO2 or
PS materials facing the substrate).
Figure 5 shows deq for a bilayer system immersed in glycerol

over a Si substrate, as a function of (a) d1
SiO2 and (b) d1

PS. Panel
(a) corresponds to a configuration in which a thin layer of PS is
on top of a SiO2 slab, which in turn is facing the Si substrate,
and panel (b) corresponds to the inverted configuration (see
the schematics in the figure). The gravity force in this case is
calculated as Fg = g(ρ1d1 + ρ2d2 − ρglycerol(d1 + d2)). We
consider bottom thin films of d1 ∈ [40, 2000] nm and top films
of d2 ∈ [10, 600] nm. For these slab thicknesses and materials,

we find that deq can be tuned between 50 and 62 nm if SiO2 is
facing the substrate (Figure 5a) or between 300 and 915 nm if
it is PS (Figure 5b). Due to the reach of the interaction
between the bodies, for thin bottom films the Casimir force is
strongly modified by the presence of the top material (i.e.,
Fresnel coefficients contain information on the layered system),
changing the equilibrium distance remarkably. In contrast, for
thick enough bottom layers (d1

SiO2 ∼ 300 nm and d1
PS ∼ 2000

nm), the Casimir interaction is the same as that of two semi-
infinite substrates separated by a liquid, regardless of the
thickness of the material on top (although it has an effect on
the gravity force). Moreover, no equilibrium positions are
found in panel (b) for bottom layers with d1

PS < 1000 nm and
top layers with d1

SiO2 > 100 nm, as the low amount of PS cannot
overcome attractive Casimir forces together with the weight of
the SiO2 film on top. Figures S7 and S8 in the Supporting
Information display the Casimir, gravity, and total forces as a
function of the separation distance for two limiting cases of thin
and thick films in both configurations.

Composite System. Another appealing hybrid system
amenable to the experimental realization consists of a matrix
with a volume fraction of small inclusions inside65 that will
display a modified dielectric permittivity and, as a result, will
have an effect on the Casimir force. In this case, the total force

Figure 4. Equilibrium distance (deq) as a function of the slab thickness
(d1), at T = 250 K, T = 300 K, and T = 350 K for (a) Teflon, (b) SiO2,
and (c) PS, immersed in glycerol over a Si substrate. Solid lines
correspond to stable equilibrium positions and dashed lines to
unstable ones.

Figure 5. Equilibrium distance (deq) in a bilayer configuration
(containing SiO2 and PS), immersed in glycerol over a Si substrate,
as a function of the slab thickness of the bottom layer (d1), for
different thicknesses of the top layer (d2), for the configurations
represented with schematics in each panel.
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acting on the system can be tuned through the total thickness
of the layer (d1) and filling fraction of the inclusions ( f). We
consider two limiting cases of thin films (d1 = 100 and 1000
nm), with 40% of PS inclusions ( f = 0.4) inside a homogeneous
matrix of SiO2 and the complementary system, i.e., a PS matrix
with 40% SiO2 inclusions. For these hybrid systems, the gravity
force is calculated as Fg = g( fρid1 + (1 − f)ρhd1 − ρglycerold1),
with i and h standing for inclusions and host, respectively.
Figure 6a shows the total force acting on a SiO2 matrix as a

function of the separation distance, d0, and using the effective
permittivity provided by Maxwell−Garnett, Bruggeman, and
Cuming models in eqs 8, 9, and 10. This strategy was
previously considered in ref 39 to evaluate the effect on the
Casimir force with polymer matrices with metallic inclusions
inside. Results for the complementary system are displayed in
Figure 6b, and εeff(iξn) for each model are shown in Figure S9
of the Supporting Information. Several trends are found for
each model and configuration (panels (a) and (b)), as was
previously indicated for metallic inclusions.39 The three models
follow the same trend, predicting stable deq in panel (a) but
providing different distance values with maximum variations of
∼30 nm, depending on the model considered. In contrast, in
panel (b) no deq are obtained since a total force F < 0 for all
separation distances is predicted by the Maxwell−Garnett

model, while the Cuming and Bruggeman models produce
stable positions. In all configurations and for all models
predicting deq, the equilibrium distance is almost independent
of the slab thickness (for the range of parameters here
considered). Analysis of εeff (iξn) in Figure S9 (Supporting
Information) shows that both the Maxwell−Garnett and
Bruggeman models provide an effective permittivity that
tends to that of the host matrix depending on the f value,
which nonetheless does not produce similar total forces.
However, εeff(iξn) in the Cuming model hardly varies with f,
and it is always less than that of the host matrix, which explains
the predicted large repulsive Casimir forces and deq, in
comparison to the other models. The relevance of the particular
organization of the two materials in the hybrid film is reflected
in the fact that the combination of the same materials at the
same proportion in a bilayer, or in a composite configuration
when nanolevitation is predicted, exhibits very different
behavior. For instance, while a thin film (d1 = 100 nm) of
SiO2 with 40% of PS inclusions presents stable equilibrium
positions at deq ∈ [97−128] nm (Figure 6a), a bilayer of 100
nm with 60 nm of SiO2 facing the Si substrate, with a PS layer
of 40 nm on top, finds the stable position at deq ∼ 54 nm
(Figure 5a), and the inverted configuration does not even
present equilibrium positions (Figure 5b). The complementary
system, a PS matrix with 40% of SiO2 inclusions, presents deq ∈
[19−137] nm (Figure 6b), while none of the corresponding
bilayer configurations display equilibrium positions (Figure 5b).

4. CONCLUSIONS
In conclusion, we have found a set of realistic materials and
liquid compounds that give rise to nanolevitation in plane-
parallel configurations due to the balance between gravity and
Casimir forces. We have performed systematic studies in which
those materials are analyzed as single layers or combined in
bilayers or composites, all configurations providing tunable
equilibrium distances of several tens and hundreds of
nanometers. In particular, the equilibrium distances at which
the Casimir force finely cancels the gravity force can be
adjusted through the slab thickness in single-layer config-
urations. The Casimir force in bilayers can be tuned through
the multiple Fresnel coefficients for thin enough layers
(otherwise, the interaction is that of a single layer) and,
therefore, through the thickness of each layer. For composites,
the interaction is mediated through the simple Fresnel
coefficients, and the choice of the model to represent the
effective permittivity is critical since different models predict
very different behavior. For those models predicting equili-
brium distances, we show that the possibility to tune it lies now
in the effective permittivity which can be modified through the
filling fraction of the inclusions. Our results pave the way for
novel suspension and nonadhesive strategies at the nanoscale.
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Figure 6. Total force (F) as a function of the separation distance (d0),
for (a) a SiO2 matrix with 40% of PS inclusions ( f = 0.4) and (b) the
complementary system (PS matrix with 40% of SiO2 inclusions), for d1
= 100, 1000 nm, using the effective permittivity εeff(iξn) provided by
Maxwell−Garnett, Bruggeman, and Cuming models in eqs 8, 9, and
10. F(d0,T) = 0 is marked with dashed gray lines. Inset in panel (b) is a
zoom-in close to short separation distances, showing F = 0 for both
thicknesses of the Bruggeman model.
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